

OUTLOOK

Commentary and Opinion

By Gary Vilkoff for The Washington Post

The Cosmic Riddle: How Rocks and Stars Became Flesh and Blood

By Eugene F. Mallove

LIFE'S EMERGENCE from the dust of the universe must be counted the greatest wonder of nature. We are all starstuff. Every atom of our bodies was cooked in primordial nuclear fires or blasted from the innards of dying suns.

But how did our life get there? Did a supernatural Designer — outside space and time — breathe fire into senseless matter? Is life as we know it the inevitable product of the physical universe? These are questions that cannot yet be answered by science. But for the last 30 years, a scientific approach to the origin of life has dug up tantalizing clues and unleashed new controversy. Not only the *how* but the *where* of life's beginning is the focus of the scientific quest.

The consensus view of science is that life began in the oceans of chemical broth cooked up on the primitive Earth over 3.5 billion years ago. But there are stirrings of dissent among some theorists who, backed by the latest astronomical findings, place life's origin in comets, in tenuous clouds of matter in interstellar space or even on other distant worlds far removed from the Sun and its brood of planets.

There is overwhelming biological, geochemical and paleontological evidence that the course of life has followed an evolutionary path, sometimes gradually and other times in great spurts, since its inception on Earth. True, the mechanisms of biological evolution are still heatedly argued by sci-

tists. But that life evolved to its present state from lower forms is as close to scientific fact as anything can be.

Yet the origin of the first living cell from which everything else evolved remains a deep mystery. We know more about the first milliseconds following the Big Bang that created the universe than we know about that.

We are far from certain even that "life-as-we know it" is the only type of "life" that may grace the cosmos. Our life is based on the element carbon. But there may be chemistries based on other elements — like the silicon that makes up sand — that could lead to replicating and information-processing "life."

Even more fantastic, perhaps other "life" inhabits niches totally alien to our conventional wisdom — the hot surfaces of dense stars, the electromagnetic fields of interstellar space or, on cold planets, low-temperature crystalline networks yet unknown. We suffer terribly that we have but one example of life — Earthlife — with nothing to compare it to. If life is the inevitable offspring of matter, as seems likely to many scientists, the cosmos should be just teeming with life, and we will someday meet with fellow questers.

The weight of modern scientific opinion is that life started in the oceans of primitive Earth — a chance or inevitable outgrowth of a "soup" of chemicals. By radioactive dating of meteorites, scientists have determined the age of the solar system — about 4.6 billion years. The oldest rocks on the surface of the Earth are 3.8 billion years but underwent too much heating for any fossilized cellular life forms to be apparent.

See LIFE, C2, Col. 1

Eugene Mallove, an astronautical engineer living in Holliston, Mass., writes the syndicated column "Starbound."

How the Stars Gave Birth to Life

1164

But rocks 3.5 billion years old have the fossil remains of single-celled organisms. The startling conclusion: Life appeared on Earth about a billion years after the planet solidified, a small fraction of its age, a smaller fraction still of the 12- to 20-billion year age of the universe. How much less than that billion years it took to get to that very first cell may never be known, but it could have taken 3 surprisingly short time — several hundred million

The short time to the first cell is the only indication that life starts reasonably easily on a suitable planet. On the other hand, the succeeding 1 billion years, which the fossil record shows life remaining for the most part in one cell only, might indicate that complex multicellular life is a long, slow, meander coming. It was only 570 million years ago that life began as evolutionary explosions that led to humanity's great diversity of plants and animals in water, on land, in the air and in space.

composed of cells whose main characteristics are an ability to metabolize — exchange chemicals with their surroundings to get energy and material for their work — and an ability to pass on information to succeeding generations of similar cells. The passing of information is the responsibility of nucleic acids within the cell — the DNA and RNA that are the repository of the genetic code.

ative developed. The Russian and British biochemists, A.I. Oparin and H.B.S. Haldane, independently suggested in the 1920's that the primitive Earth did not have an oxygen atmosphere. They suggested that, rather, a had an atmosphere of substances such as hydrogen, methane, ammonia and carbon dioxide. Moreover, they postulated that this atmosphere might lead to the formation of primitive organic molecules.

It was not until 1953 that their suggestions were subjected to test, in what is now called the *Miller-Urey/Miller experiment*. A graduate student, Stanley Miller, acting on a suggestion of his professor, Harold Urey, at the University of Chicago, set up a glass chamber into which methane, ammonia, hydrogen and water were introduced. The above mixture was subjected to an electric discharge — much as lightning might on a raw Earth. Within days he found in the chamber the building blocks of proteins — amino acids, plus other organic molecules.

In the same year, Francis Crick and James Watson, finally unravelled the mystery of DNA, discovering that it is a simple coding sequence that so-called chemical "bases" provide genetic information to be stored and transferred — similar to the way information is stored in a computer.

While the U.S. Miller and Watson developments were still being carried out of a test tube, British attempts to illustrate how living organisms are faced with changes and loss problems, DNA to the information required to make the organism — the genome —

years, traps in that ocean of Earth at "weaker" self-replicating did arise which began to be the chemical new. Unfrom the surroundings.

It is hard to imagine how such a cell could preserve itself very long in a medium containing no organic material. This problem is not, however, the only one that has been experienced with these granular "cells" — mere cultures of chemical broth, for example, are covered by a fatty coating. What is the chemical nature of these membranes? If the membranes were to rupture, would not the cells be diluted to oblivion? What is the size of these microspheres — the size of real cells — have been determined with the electron microscope, but not yet with the light microscope. What is the behavior of these cells in the presence of other cells? Do they move? Do they divide? Do they secrete? Do they take up organic material and assimilate it? Do they produce offspring? These problems, offering

Very much new experiment came up, but on what they have happened ago.

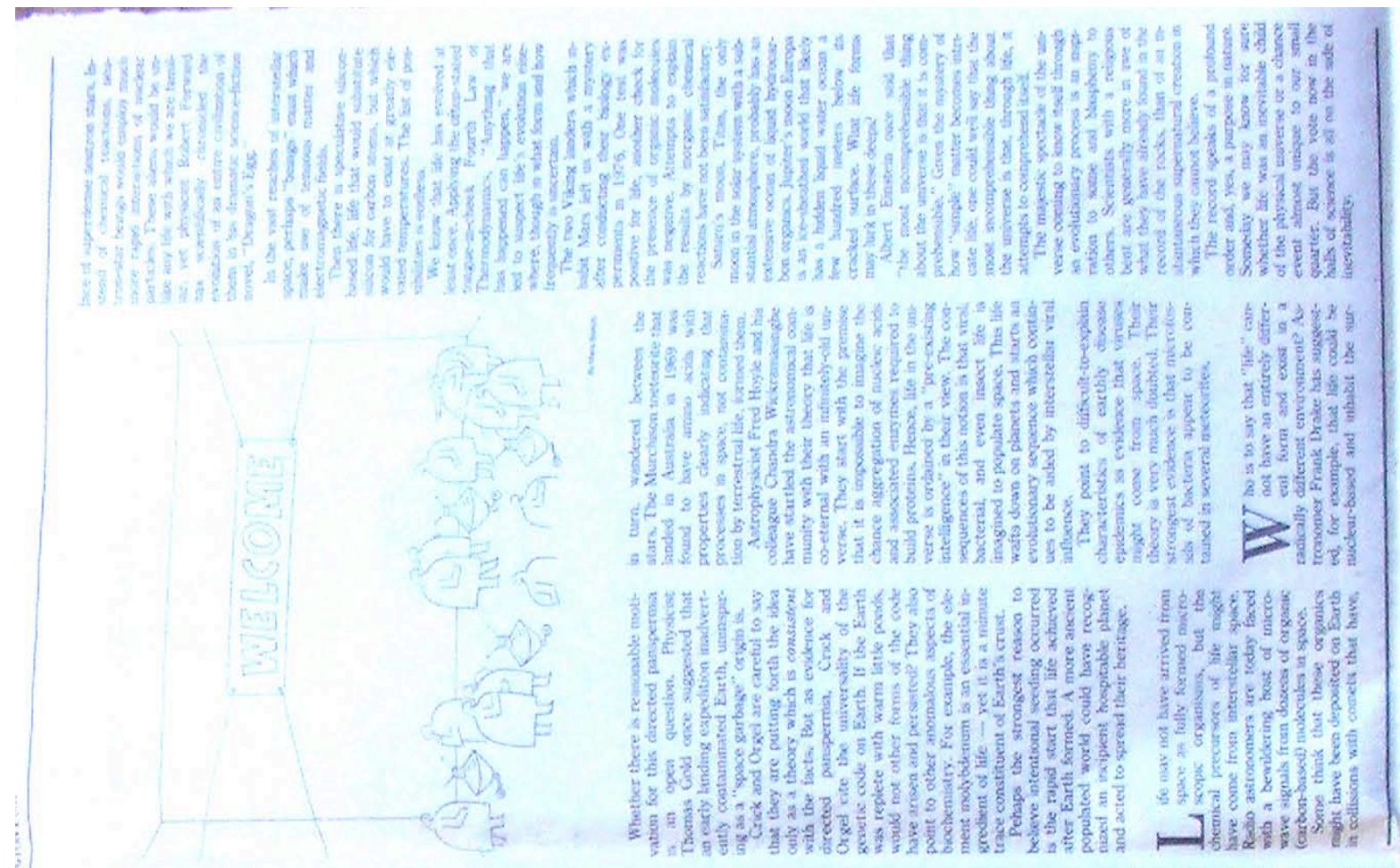
"warm little pond," notice of

There is a legend, based upon the theory of evolution, that life on Earth could not have originated elsewhere. Does it matter? Since

The Swedes, on the other hand, started off with a theory of "post-spermites", proposed a theory of "post-spermites" early in this century, these questions have refused to go away. Arrhenius contended that spores of life could rise in the atmosphere of another planet, either in this solar system or around another star. Electrostatic forces might eject such spores from the atmosphere and these spores could be carried across interplanetary or interstellar space to start life on other worlds. Perhaps life on Earth began this way.

pedents by Carl Sagan and others, who claim that unidentified macroscopic life could survive ultraviolet X-ray proton and cosmic radiation of low-energy X-rays in vacuum and space, X-rays in vacuum and minus-200 degrees Centigrade cold. The difficulties for natural panspermia are indeed formidable. A vast quantity of spores would have to emerge from another star system to have a good chance of reaching Earth — although just one spore would be sufficient in theory. A more radical theory — deliberate or directed panspermia — was proposed by Francis Crick and Leslie Orgel. This theory is much more difficult to disprove, since it is possible that an advanced race would have

This oxygen permitted an ozone combination of three oxygen atoms) to form in the upper atmosphere which shut out ultraviolet radiation destructive to surface life. (Formerly, the radiation perhaps hindered the formation of the chemical compound that preceded life.) The period of having only cells without a nucleus lasted to 1.5 billion years ago when the first "eukaryotes" appeared — cells with distinct nuclei containing their genetic material. Very strong evidence links the advent of cells with nuclei to a


The significance of these cells with nuclei is that they were the first organisms able to reproduce sexually. The earlier, simpler reproduction divided in half. Sexual reproduction — with its ability to more readily produce slightly altered forms in each generation — no doubt greatly speeded up evolution. Significantly, the greatest evolutionary expansion occurred shortly after the cells with nuclei appeared. It has been said that "the price of sex was death," for in their simple, asexual, cells continually produce identical copies of themselves (except for chance mutations). They thus are the closest thing to numerical stagnation. The deaths of endocytes and higher forms, however, continually make room for new life.

A "warm little pond" notion of life's origin has held sway. But what if that little pond were not on Earth? Could life have originated elsewhere? Does it matter? Since the Swedish chemist Svante Arrhenius proposed a theory of "panspermia," early in this century, these questions have refused to go away. Arrhenius contended that spores of life could ride in the atmosphere of another planet, either in this solar system or around another star. Electrostatic forces might "eject" such spores from the atmosphere and the spores could be carried across interplanetary or interstellar space to start life on other worlds. Perhaps life on Earth began this way.

Panspermia would not remove the problem of the biochemical origin of life, just change the site to another world at an earlier time. Doubt has been cast on this perspective by a hypothesis by Carl Sagan and others, who claim that undiluted microorganisms couldn't survive ultraviolet, X-ray, proton and cosmic radiation in space. X-ray space journeys in vacuum, although 200 degrees Centigrade cold.

The difficulties for natural panspermia are indeed formidable. A vast quantity of spores would have to emerge from another star system to have a good chance of reaching Earth — although just one spore would be sufficient in theory.

A more radical theory — deliber-
ate or directed panspermia — was proposed by Francis Crick and Leslie Orgel. This theory is much more difficult to disprove, since it is possible that an advanced race would have

base of supersonic meteorite return, instead of chemical reactions, believe stellar beings would employ much more rapid interactions of molecules. These aliens would be like tiny life with which we are familiar, yet physics. Robert F. Service, the scientist, concluded the evolution of an entire civilization of them to be "dramatic science-fiction," "Daring's" ERG.

In the most reaches of interstellar space, perhaps "Beings" exist which make use of fermous matter and electromagnetic fields.

Then there is speculate life-based life that would substitute carbon for carbon atoms, but which would have to exist at greatly elevated temperatures. The law of gravitation is evident.

We know that life has evolved at least once. Applying the often-stated "one-achoo, Fourth Law of Thermodynamics," "Anything that has happened can happen," we are led to suspect life's evolution elsewhere, though in what form and how frequently is uncertain.

The two Vikinglanders which inhabit Mars left us with a mystery after conducting their biology experiments in 1976. One test was positive for life, another check for the presence of organic molecules was negative. Attempts to explain the results by inorganic chemical reactions have not been satisfactory. Sartor's model. Thus, the only life in the solar system with a substantial atmosphere, probably has an extensive ocean of liquid hydronium ions. Jupiter's moon Europa is an ice-sheathed world that likely has a hidden liquid water ocean a few hundred meters below its cracked surface. What life forms may lurk in these oceans?

Albert Einstein once said that "the most incomprehensible thing about this universe is that it is comprehensible." Given the mystery of how "simple" matter becomes intricate life, one could well say that the most incomprehensible thing about the universe is that through life, it attempts to comprehend itself.

The majestic spectacle of the universe coming to know itself through an evolutionary process is an inspiration to some and mysterious to others. Scientists, with a religious bent are generally more in awe of what they have already found in the record of the rocks, than of instantaneous supernatural creation in which they cannot believe.

The record speaks of a profound

order and, yes, a purpose in nature.

Somebody we may know for sure

whether life was an inevitable child

of the physical universe or a chance

event, almost unique to our small

quarter. But the role now in the

hands of science is all on the side of

inevitability.

Whether there is reasonable motivation for this directed panspermia is an open question. Physicist Thomas Gold once suggested that an early landing expedition inadvertently contaminated Earth, unspooling as a "space garbage" origin is.

Crick and Orgel are careful to say that they are putting forth the idea only as a theory which is consistent with the facts. But as evidence for directed panspermia, Crick and Orgel cite the universality of the genetic code on Earth. If the Earth was replete with warm little pools, would not other forms of the code have arisen and persisted? They also point to other anomalous aspects of biochemistry. For example, the element molybdenum is an essential ingredient of life — yet it is a minute trace constituent of Earth's crust. Perhaps the strongest reason to believe intentional seeding occurred is the rapid start that life achieved after Earth formed. A more ancient populated world could have recognized an incipient hospitable planet and acted to spread their heritage.

They point to difficult-to-explain characteristics of earthly disease epidemics so evidence that viruses might come from space. Their theory is very much doubted. Their strongest evidence is that microscops of bacteria appear to be contained in several meteorites.

Life may not have arrived from space as fully formed macroscopic organisms, but the chemical precursors of life might have come from interstellar space. Radio astronomers are today faced with a bewildering host of microwave signals from dozens of organic (carbon-based) molecules in space. Some think that these organics might have been deposited on Earth in collisions with comets that have,

in turn, wandered between the stars. The Murchison meteorite that landed in Australia in 1969 was found to have amino acids with properties clearly indicating that processes in space, not contamination by terrestrial life, formed them.

Astrophysicist Fred Hoyle and his colleague Chandra Wickramasinghe have started the astronomical community with their theory that life is co-external with an infinitely-old universe. They start with the premise that it is impossible to imagine the chance aggregation of nucleic acids and associated enzymes required to build proteins. Hence, life in the universe is ordained by a "pre-existing intelligence" in their view. The consequences of this notion is that viral, bacterial, and even insect life is imagined to populate spaces. This life waits down on planets and starts an evolutionary sequence which continues to be aided by interstellar viral influence.

They point to difficult-to-explain

epidemics so evidence that viruses

might come from space. Their

theory is very much doubted. Their

strongest evidence is that micro-

scopic bacteria appear to be con-

tained in several meteorites.

Who is to say that "life" cannot have an entirely different form and exist in a radically different environment? As an example, that life could be nuclear-based and inhabit the sur-